Matrix-free constructions of circulant and block circulant preconditioners
نویسندگان
چکیده
منابع مشابه
Matrix-free constructions of circulant and block circulant preconditioners
A framework for constructing circulant and block circulant preconditioners (C) for a symmetric linear system Ax= b arising from signal and image processing applications is presented in this paper. The proposed scheme does not make explicit use of matrix elements of A. It is ideal for applications in which A only exists in the form of a matrix vector multiplication routine, and in which the proc...
متن کاملBest Conditioned Circulant Preconditioners
In this paper, we discuss the solutions to a class of Hermitian positive deenite system Ax = b by the preconditioned conjugate gradient method with circulant preconditioner C. In general, the smaller the condition number (C ?1=2 AC ?1=2) is, the faster the convergence of the method will be. The circulant matrix C b that minimizes (C ?1=2 AC ?1=2) is called the best conditioned circulant precond...
متن کاملA Shared Memory Parallel Implementation of Block-Circulant Preconditioners
The parallel numerical solution of large scale elliptic boundary value problems is discussed. We analyze the parallel complexity of two block-circulant preconditioners when the conjugate gradient method is used to solve the sparse linear systems arising from such problems. A simple general model of the parallel performance is applied to the considered shared memory parallel architecture. Estima...
متن کاملBlock {ω}-circulant preconditioners for the systems of differential equations
The numerical solution of large and sparse nonsymmetric linear systems of algebraic equations is usually the most time consuming part of time-step integrators for differential equations based on implicit formulas. Preconditioned Krylov subspace methods using Strang block circulant preconditioners have been employed to solve such linear systems. However, it has been observed that these block cir...
متن کاملBlock preconditioners with circulant blocks for general linear systems
Block preconditioner with circulant blocks (BPCB) has been used for solving linear systems with block Toeplitz structure since 1992 [R. Chan, X. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comput. (13) (1992) 1218–1235]. In this new paper, we use BPCBs to general linear systems (with no block structure usually). The BPCBs are constructed by partitioning a gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Linear Algebra with Applications
سال: 2004
ISSN: 1070-5325,1099-1506
DOI: 10.1002/nla.346