Matrix-free constructions of circulant and block circulant preconditioners

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-free constructions of circulant and block circulant preconditioners

A framework for constructing circulant and block circulant preconditioners (C) for a symmetric linear system Ax= b arising from signal and image processing applications is presented in this paper. The proposed scheme does not make explicit use of matrix elements of A. It is ideal for applications in which A only exists in the form of a matrix vector multiplication routine, and in which the proc...

متن کامل

Best Conditioned Circulant Preconditioners

In this paper, we discuss the solutions to a class of Hermitian positive deenite system Ax = b by the preconditioned conjugate gradient method with circulant preconditioner C. In general, the smaller the condition number (C ?1=2 AC ?1=2) is, the faster the convergence of the method will be. The circulant matrix C b that minimizes (C ?1=2 AC ?1=2) is called the best conditioned circulant precond...

متن کامل

A Shared Memory Parallel Implementation of Block-Circulant Preconditioners

The parallel numerical solution of large scale elliptic boundary value problems is discussed. We analyze the parallel complexity of two block-circulant preconditioners when the conjugate gradient method is used to solve the sparse linear systems arising from such problems. A simple general model of the parallel performance is applied to the considered shared memory parallel architecture. Estima...

متن کامل

Block {ω}-circulant preconditioners for the systems of differential equations

The numerical solution of large and sparse nonsymmetric linear systems of algebraic equations is usually the most time consuming part of time-step integrators for differential equations based on implicit formulas. Preconditioned Krylov subspace methods using Strang block circulant preconditioners have been employed to solve such linear systems. However, it has been observed that these block cir...

متن کامل

Block preconditioners with circulant blocks for general linear systems

Block preconditioner with circulant blocks (BPCB) has been used for solving linear systems with block Toeplitz structure since 1992 [R. Chan, X. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comput. (13) (1992) 1218–1235]. In this new paper, we use BPCBs to general linear systems (with no block structure usually). The BPCBs are constructed by partitioning a gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Linear Algebra with Applications

سال: 2004

ISSN: 1070-5325,1099-1506

DOI: 10.1002/nla.346